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Abstract 
Increasing airborne particulate matter (PM) concentration in Kenya is an 
unfortunate consequence of rapid urbanization, coupled with a lack of strict 
implementation of air quality regulations. This has led to detrimental effects 
on human health, environment and local climate. To gain an in-depth under-
standing of these effects, there is a need for a detailed characterization of PM 
in terms of abundance, sources, and properties, especially over the less cha-
racterized areas such as The Republic of Kenya (Kenya). This study presents 
long-term (1980-2020) spatial-temporal distributions and trends of PM2.5 
over Kenya retrieved from the MERRA-2 model. The spatial patterns of an-
nual mean PM2.5 loading were generally characterized by low (<7 µg·m−3), 
moderate (7 - 9 µg·m−3), and high (>11 µg·m−3) PM2.5 concentrations indicat-
ing distinct features of PM2.5 load. High (>11 µg·m−3) PM2.5 concentrations 
were observed over the arid and semi-arid areas of the Northwest part of the 
country dominated by dust. Whereas, low (<7 µg·m−3) PM concentrations 
were observed over the Central and South Western parts of the country, with 
high vegetation and relatively high altitudes and precipitation. The seasonal 
mean PM2.5 over Kenya was found to be high (low) during the local dry (wet) 
seasons with mean values of >12 µg·m−3 and <6 µg·m−3, respectively. The 
magnitude of inter-annual variability in PM and its components over Kenya 
was found to be influenced by changes in emissions and local meteorology. 
The major PM2.5 emissions components were natural dust emissions over the 
arid and semi-arid areas in Northern Kenya with low annual precipitation. 
Linear trend analysis revealed an increase in PM2.5 over the years. Further-
more, the annual spatial trends revealed a general increase in PM2.5 over 
Kenya, being positive and significant over the dust-dominated areas of 
Northern Kenya. Later the spatial correlation between PM2.5 and its compo-
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nents revealed areas of similarities/dissimilarities and the magnitude of a 
correlation coefficient. PM2.5 correlated positively with dust in most parts of 
the country, followed by Sulphate (SO4), showing the significant contribution 
of the two components to PM2.5. On the other hand, a low (<2.5) correlation 
was observed between PM2.5 and Black Carbon (BC) and Organic Carbon 
(OC). Further analysis of annual and seasonal spatial variation, linear trends, 
and correlation of PM2.5 and components revealed dust as the major compo-
nent of PM2.5 concentrations over the study domain. The study has improved 
the understanding of PM2.5 concentrations over the domain. It could provide 
significant information suitable for policy-making on air quality regulations 
in Kenya, especially on dust reduction mechanisms over the dominant areas. 
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1. Introduction 

Airborne particulate matter (PM) is one of the main pollutants responsible for 
ambient air quality, especially in urban areas where a significant percentage of 
the world’s population lives [1]. Although PM can be classified in several ways, 
the classification based on aerodynamic diameter is one of the main criteria to 
describe its parameter. The Environmental Protection Agency (EPA) has been 
discriminating particles mainly into PM1, PM2.5, and PM10 referring to PM with 
aerodynamic diameter ≤ 1, 2.5, and 10 µm, respectively. [2] 

The PM1, also referred to as sub-micron or ultra-fine particles, originates from 
a variety of sources including chemical processes and numerous anthropogenic 
combustion sources such as vehicles, power plants, industries, residential cook-
ing/heating activities, and biomass burning [3]. They are more harmful since 
they remain in the atmosphere for longer periods (residence time of one week) 
and reach deeper into the respiratory system carrying with them more toxins 
from anthropogenic emissions [4] [5]. On the other hand, PM2.5 is a complex 
mixture of chemical species originating from distinct primary emission sources 
such as fuel combustion in vehicles and industrial emissions [2]. Likewise, they 
also emanate from secondary processes such as photochemical reactions in the 
atmosphere [6]. PM2.5 penetrates deep into the respiratory organs causing respi-
ratory and cardiovascular diseases such as pulmonary fibrosis, asthma, chronic 
obstructive, type 2 diabetes and cancer [7] [8]. Over the years, they have been 
known to cause premature deaths [9] [10] and are one of the major agents for 
climate perturbations [11] [12]. PM10 are coarse-mode particles originating 
mainly from natural sources such as sea salt and dust from unsealed roads and 
construction activities [2]. Elevated levels of PM10 particles in the atmosphere 
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can irritate the eyes and throat, as well as raise health effects associated with res-
piratory diseases [2]. 

Significant cases of these episodes are reported in low and middle-income 
countries (LMICs) where effective monitoring and mitigation strategies are not 
fully functional. In these countries, the levels of PM concentration are known to 
exceed the World Health Organization (WHO) upper limits of 10 and 20 µg·m−3 
for PM2.5 and PM10, respectively [1]. This creates the need to routinely monitor 
PM, especially over Sub-Saharan Africa (SSA) and other LMICs with elevated 
concentrations and to come up with scientifically sustainable remedial measures. 

Several studies focusing on the level of PM concentration have been reported 
in different parts of the globe. Studies by Gupta et al. [13] showed a good corre-
lation between satellite data and ground-based values, which demonstrated that 
satellite data can be used for monitoring air quality. Wang et al. [14] reported a 
higher concentration of PM2.5, which accounts for much of China’s poor air 
quality and the spatiotemporal characteristics of urban PM2.5 concentrations, has 
constituted a matter of significant interest within the Chinese research and poli-
cy communities. On the other hand, He et al. [15] derived PM2.5 from MERRA-2 
to establish the impact of meteorological variables on PM2.5 and its major com-
ponents based on a multiple linear regression (MLR) model. They observed an 
increasing trend of PM2.5 and its components for the entire study period of 38 
years in China. 

Limited studies have been conducted in Africa on PM pollutants due to limited 
air quality monitoring stations and lack of air quality standards regulations [16]. 
An overview of air pollution in most African countries reveals that air pollution 
levels often exceed international guidelines. The pollution levels may be rising 
because of increased motor vehicle traffic, biomass burning, industrial activities 
and desertification; with associated health and environmental effects. [10] 

Onyango et al. [17] conducted two-year PM measurements at three sites in the 
Republic of Uganda representing wide dynamics of urbanization. They reported 
an annual averaged PM levels were found higher than the WHO air quality 
guidelines. It was observed that the concentrations were higher during dry sea-
sons. On the other hand, Singh et al. [18] carried out an air quality assessment in 
three capital cities of East Africa (EA) countries i.e., Kenya (Nairobi), Uganda 
(Kampala), and the Republic of Tanzania (Dodoma). The measured data re-
vealed that the mass concentrations of PM2.5 and PM10 in all the cities were re-
ported high and hazardous to human health. A recent report by Tesema et al. 
[19] reveals that EA shares a considerable burden of childhood mortality, ac-
counting for more than half of all under-five children mortality in SSA region. 
Air pollution has been considered a major public health concern as a top risk 
factor for mortality in these countries and accounts for almost one million 
deaths annually [9]. Despite the health risks, air quality programs, particularly in 
SSA, have to be implemented for systematic PM data collection to reduce the air 
pollution burden.  

The Republic of Kenya, hereafter simply Kenya, is one of the countries in the 
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SSA region, and more specifically in EA, that deserves better characterization of 
PM in terms of spatiotemporal distribution, trends, and associated effects. It is 
currently experiencing an unprecedented increase in PM concentration attri-
buted to increased urbanization, industrialization, population, and desertifica-
tion [10]. Despite this, the country lags behind the rest of the world in air quality 
research resulting in unquantified effects on human health, the environment and 
local climate [20] [21]. Previous studies [7] [21] [22] have documented elevated 
concentrations of PM2.5 and PM10 over the country, exceeding the WHO stan-
dards [1]. The studies mentioned above were pilot studies based on data col-
lected for a very short period. In addition, these studies were mainly based in 
Nairobi, with most cities in Kenya being ignored, despite the possibility of high 
inter-city PM disparity, emanating from distinct emission sources, and prevail-
ing climatic conditions. Furthermore, the instrumentation used was expensive 
and sophisticated, and required technical workforce for monitoring. Such 
high-cost studies compound and aggravate the difficulty of LMICs such as 
Kenya to effectively monitor air pollutants continuously in many areas. The use 
of alternative sources of data such as satellites and model data provides an alter-
native opportunity to monitor PM at multiple sites with high precision, and low 
cost for impact assessment and policy making.  

The objectives of the present study are to characterize PM2.5 mass concentra-
tion over Kenya using long-term (1980-2020) data retrieved from the MERRA-2 
model. Specifically, the study assesses the spatiotemporal distributions and 
trends in PM2.5, as well as the correlation between PM2.5 and its components 
(Dust, sea salt, organic carbon, black-carbon and sulphate). The study further 
examines the contribution of PM components to the overall PM2.5 concentra-
tions. This is essential for policymaking, especially in highly vulnerable urba-
nized environments dominated by anthropogenic activities. The rest of the paper 
is organized as follows: Section 2 gives a description of the study domain and the 
prevailing meteorological conditions, data, and methodology. Section 3 details 
the results and discussion of the study, whereas Section 4 summarizes the main 
findings drawn from the present work.  

2. Study Area, Data and Methods 
2.1. Study Area 

The study covered the country Kenya, with the entire domain at azimuth 34˚E - 
42˚E and latitude 5˚S - 5˚N. The domain is neighbored by Tanzania to the south, 
Uganda to the west, Somalia to the east, and Ethiopia to the north. The country 
is the second most populous among the countries in East Africa (EA), with a 
population totaling 47.6 million [23]. 

The main sources of PM in the study domain emanate from anthropogenic 
activities such as industrial-vehicular emissions, biomass burning, and sus-
pended dust [7] [24]. The climate of the area is predominantly tropical, charac-
terized by moderate temperatures throughout the year. However, low tempera-
tures are recorded in the months from June to September (JJAS), whereas the 

https://doi.org/10.4236/oalib.1111807


F. Abok et al. 
 

 

DOI: 10.4236/oalib.1111807 5 Open Access Library Journal 
 

highest temperatures are noticed in January and February (JF) represented as the 
dry season [25] [26]. Rainfall is mainly found in bimodal distribution, expe-
rienced from March to May (MAM) locally referred to as “long rains” and Oc-
tober to December (OND), referred to as “short rains” [25] [27]. Based on the 
prevailing meteorological conditions, a year has been divided into four seasons: 
January-February (JF) and June-July-August-September (JJAS) represented as 
the local dry seasons, characterized by reduced rainfall and enhanced PM2.5 concen-
trations. On the other hand, March-April-May (MAM) and October-November- 
December (OND) represent the local wet seasons, characterized by enhanced 
rainfall and reduced PM2.5 concentrations [26] [28]. 

2.2. Data and Methods 
MERRA-2 
The Modern-Era Retrospective Analysis and Research and Application, version 
2 (MERRA-2) atmospheric reanalysis product was newly released by the Nation-
al Aeronautics and Space (NASA) Global Modeling and Assimilation Office 
(GMAO) in 2017. Based on the NASA GMAO Earth system model version 5 
(GEOS 5) and the Goddard Chemistry, Aerosol, Radiation and Transport 
(GOCART) aerosol module, the gridded aerosol data of MERRA-2 were assimi-
lated with satellite and ground observations. More details on the MERRA-2 
PM2.5 can be found in several works including [29] and references therein. 

The MERRA-2 PM2.5 concentrations were calculated using the equation be-
low; 

 2.5 4 2.5 2.5PM 1.375 SO 1.6 OC BC Dust SS= × + × + + +   (1) 

where SO4, OC, BC, Dust2.5, and SS2.5 represent sulfate, organic carbon, black 
carbon, dust, and sea-salt particulate matter with a diameter of less than 2.5 µm 
from the GOCART aerosol module, respectively. Notably, the nitrate PM pri-
marily emitted by vehicle exhaust and industrial production is lacking in the 
MERRA-2 PM2.5 reanalysis. The selected pm components satellite data was re-
trieved from GIOVANNI (Goddard Earth Sciences Data and Information Service 
Centre, or GES DISC), directly on the web portal https://earthdata.nasa.gov/.  

2.3. Methodology 

Several statistical metrics were used to quantify the accuracy of model-derived 
PM. They included correlation analysis, root-mean-square error (RMSE), mean 
absolute error (MAE), relative mean bias (RMB), and linear regression analysis. 
The correlation analysis is a statistical tool that studies the relationship between 
two variables. Two variables are said to be correlated if the change in one varia-
ble results in a change in the other variable. Correlation analysis is defined by a 
correlation coefficient ranging from –1 to +1. When the value of r is +1 or –1, it 
indicates a perfect positive or negative correlation between given pairs of va-
riables, respectively, with higher suggesting better agreement. The correlation 
coefficients between two variables (e.g, X and Y) are calculated as: 
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X Y
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σ σ
=    (2) 

where represents the covariance between X and Y, and are standard deviations 
of X and Y, respectively. In this work, correlation analysis was aimed at estab-
lishing the relationship between PM and its components. 

Linear regression analysis was adopted to estimate trends, where; 

 t tY c Xω ε= + ∗ +    (3) 

with tY  being the dependent variable, c  is the offset (y-intercept) which 
represents the value tY  at the beginning of the time series. tX  is the indepen-
dent variable representing time, ωis the trend estimate of the geophysical varia-
ble, whereas ε is the noise in the time series. Trends are considered significant at 
p-value of 0.005 or a 95% confidence interval when |ω/δ| > 2, whereas trends are 
considered significant at a 90% confidence level when 1.5 < |ω/δ| < 2, where δ is 
the standard deviation of the slope “ω” obtained from the linear regression. This 
linear regression analysis has the practical advantage of assessing the direction 
and magnitude of variations in long-term data [28] [30]-[33] and therefore con-
sidered suitable for executing pixel-wise analysis.  

The Root Mean Square Error (RMSE) and mean absolute error (MAE) be-
tween the model and observed PM were also computed. The RMSE gives the 
mean differences between the model output and the observed values, regardless 
of the sign of the differences. The RMSE and MAE used in the present study are 
defined by equations below 

 
( )2

model observed1 PM PM
RMS

n
x xi

n
=

−
=

∑
  (4) 

 ( ) ( )model observed
1

1MAE PM PM
n

x i x i
in =

= −∑   (5) 

where n is the number of observations and PMX (X = 2.5). 

3. Results and Discussion 
3.1. Spatiotemporal Changes in PM2.5 and Its Components 
3.1.1. Annual Patterns 
Figure 1 illustrates the annual distribution of MERRA PM2.5 and its components 
during the study period from 1980 to 2020. The MERRA PM2.5 and its compo-
nents exhibited different spatial variability, attributed to differences in anthro-
pogenic activities. 

The spatial patterns of annual mean PM2.5 mass concentration were generally 
characterized by low, moderate and high concentration indicating distinct fea-
tures of PM2.5 over the study region. Low (<7 µg·m−3) PM2.5 concentrations were 
observed over the highly vegetated parts of the Central and the Southwest parts 
of Kenya geographically situated at relatively higher altitudes [34] and relatively 
more precipitation. Moderate (7 - 9 µg·m−3) values of PM2.5 were experienced in 
the Western, the Eastern, and the North Rift parts of the study domain; charac-
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terized by moderate temperatures. On the other hand, moderate to high (9 - 11 
µg·m−3) were also observed in the Southeast region and around the Northern 
part of the country. High PM2.5 concentrations (>11 µg·m−3) were observed over 
arid and semi-arid areas of the Northwest part of the country with high temper-
atures. This could be attributed to long-range transport of dust together with 
those locally produced [35]. The concentration increases much higher (>17 
µg·m−3) around the Lake Turkana region. The carbonaceous PM2.5 from the alka-
line Lake Turkana resulted in the advection of high PM2.5 concentrations [34] as 
demonstrated by Figure 1(a) and Figure 1(e). Dust concentration Figure 1(e) is 
also high (>12 µg·m−3) around the Lake Turkana region. To this fact, it was ne-
cessary to clarify the composition of PM2.5. Dust PM2.5 occupied approximately 
46.71% of PM2.5 concentration and its high values were observed around the 
Lake Turkana region. This suggests that dust2.5 is the major component of PM2.5 
in Kenya. Moderate to high concentrations of dust (6 - 8 µg·m−3) are observed in 
the Northern part of the country due to high temperatures prevailing in those 
regions. The rest of the regions within the country which are around the equator 
and Southern hemisphere were observed with low (<6 µg·m−3) dust2.5 concentra-
tion. 

 

 

Figure 1. Spatial distribution of annual mean MERRA-2 PM2.5 and its components, including (b) Black Carbon 
(BC), (c) Organic Carbon (OC), (d) Sulphate (SO4), (e) Dust, (f) Sea Salt (SS)  over Kenya during 1980-2020. 
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Sea salt PM2.5 constituted 29.46% of PM2.5 concentration. It is highly concen-
trated in the Coastal region Figure 1(f) because of the presence of the Indian 
Ocean. Sea salt PM2.5 concentration records a high value of >8 µg·m−3. The con-
centration decreases as the distance from the Coast (Southeast) increases to-
wards the West of the country. Organic carbon and black carbon accounted for 
15.93% and 1.73% of PM2.5 concentration, respectively. Their values were found 
high in the western region around the Lake Victoria Figure 1(b) and Figure 
1(c). It is a highly vegetated area and there is Lake Victoria therefore, activities 
such as fishing are carried out. This leads to anthropogenic activities like bio-
mass burning which may be the main cause of high BC and OC concentrations. 
On the other hand, SO4 contributes to 4.54% of PM2.5 concentration, being high 
(>0.55 µg·m−3) over the Western part of the study domain. This could be caused 
by emissions from industries. It is observed that BC had the lowest percentage 
contribution to PM2.5 with its values recording <1 µg·m−3 in regions where it is 
concentrated. Whereas dust2.5 had the largest portion of PM2.5 and recorded high 
values (>12 µg·m−3) over the Northern region. Thus PM2.5 in Kenya is majorly 
constituted by dust which is naturally produced over the arid and semi-arid 
parts of the North Kenya. 

3.1.2. Seasonal Distributions 

The monthly datasets of PM2.5 and its components (BC, OC, SO4, Dust2.5, SS2.5) 
were averaged to make climatology for each season i.e., local wet (MAM, OND) 
and local dry (JF, JJAS) seasons during each year over the study domain. The 
seasonal mean values obtained for each year were also averaged with the corres-
ponding seasons during the study period (1980-2020) to make long-term clima-
tological values of PM2.5 and its components, for individual seasons. 

The seasonal patterns of PM2.5 and its components over Kenya derived from 
MERRA-2 shown in Figure 2 are consistent with respective annual patterns Fig-
ure 1. The seasonal variations of PM2.5 over Kenya are highly related to the sea-
sonality of climatic conditions and anthropogenic activities [28]. High PM2.5 con-
centration (>12 µg·m−3) over Kenya’s atmosphere was observed during the local 
dry seasons (JF followed by JJAS and OND) noticed over the dust-dominant 
zones of Northwest Kenya. On the other hand, very low PM2.5 values (<6 µg·m−3) 
were found during the local wet season (MAM months) characterized by high 
precipitation over the West and Central areas of Kenya. The reduced PM2.5 con-
centration during MAM could be associated with enhanced precipitation that 
suppresses the emission of dust and washout of PM2.5 in the atmosphere, in ad-
dition to reduced anthropogenic activities such as biomass burning. Hence, it is 
evident that the seasonal patterns of PM2.5 are closely associated with the season-
al cycle of precipitation [36] depicting an inverse relationship between them. 

On the other hand, the enhanced PM2.5 loading during local dry seasons (JF 
and JJAS) could be attributed to an increased amount of anthropogenic activities 
such as land preparations, biomass burning, combustion of fossil fuels, vehicular 
and industrial emissions, and forest fires which release a significant amount of 
smoke particles into the atmosphere [28] [37]. Furthermore, the dry seasons are 
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characterized by intense solar radiation which leads to terrain heating. The 
stronger near-surface winds during JJAS over the arid and semi-arid areas of the 
Northwest parts of Kenya could accelerate the formation of dust particles. Thus, 
high temperatures in association with strong winds, create a strong convection 
that results in the upward movement of loose soil contribute to increased SS and 
hence high PM values during the local dry seasons [34] [35]. In terms of area 
coverage and strength of PM components, seasonal spatial distribution is related 
to annual distribution. Each component concentration was found high during JF 
followed by JJAS and OND months, and minimum during MAM. 
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Figure 2. Seasonal variation of MERRA-2 PM2.5 and its components over Kenya during 1980-2020. 

3.2. Spatiotemporal Trends in MERRA-2 PM2.5 and Its Components 
3.2.1. Linear Trends 
The inter-annual mean changes of MERRA-2 PM2.5 and these individual com-
ponents over Kenya during 1980-2020 is shown in Figure 3. Overall, PM2.5 and 
its components (BC, OC SO4, Dust and SS) fluctuate from year to year and dec-
ade to decade as observed by MERRA-2. There was a gradual increasing trend in 
PM2.5 up to 2011 where it was at its highest peak reached to 12.6 µg·m−3. After 
2011 there is a transition from increasing to decreasing concentrations for the 
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rest of the period. Similarly, the results showed a similar growth trend for SO4 
and a significant turning point from increasing to decreasing in 2011. Compara-
ble trends were also found in BC and OC, but their values exhibited much higher 
in 2020. In addition, dust and SS showed a progressive increase after 1980. Not-
ably, the increasing trend in PM2.5 components has been increasing over the 
years after 1980. Generally, the inter-annual variability in PM2.5 and its individu-
al components over Kenya is influenced by changes in anthropogenic emissions 
and meteorology. The major PM emissions are dust emissions over the arid and 
semi-arid areas in the North Kenya depicted with low annual rainfall [28]. Other 
PM2.5 emissions are considered as the anthropogenic emissions resulting from 
industrial-vehicular emissions, forest burning, and agricultural and biomass 
burning [20] [21] [24] attributed to increased concentrations. 
 

 

Figure 3. The annual mean trends in MERRA-2 PM2.5 and its five major components over Kenya from 
1980 to 2020. 

3.2.2. Spatial Trends  
The spatial distribution of annual PM2.5 and its components (BC, OC, SO4, Dust 
and SS) trends retrieved from MERRA-2 is shown in Figure 4. The observed 
positive trend implies an increase in PM2.5 concentration, whereas the negative 
trends interpret a reduced levels of PM2.5. Comparing the patterns of variation 
observed in the spatial trends with the averaged annual and seasonal distribution 
Figure 1, and Figure 2), it is revealed that positive trends generally correspond 
to high PM2.5 regions and vice-versa. This signifies the role of emission sources 
in enhancing PM2.5 concentrations over Kenya. An overall increase in annual 
PM2.5 trends was observed with a significant trend of 95% over most regions in 
Kenya. The trends were significant over the arid and semi-arid areas of the 
Northern and Eastern parts of Kenya Figure 4(a) dominated by dust. The in-
creased trend could be associated with reduced precipitation and wind speed 
resulting in an increase in locally generated dust [35] [38]. Negative trends for 
Dust, SO4 and SS were observed in the Western and Central regions of Kenya at-
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tributed to dense coverage by vegetation and high altitudes relative to rest of the 
domain. These regions also experience increased precipitation and, therefore, no 
exposure of soil to an increased concentration of PM2.5 and its individual com-
ponents. Dust is the major component contributing to high PM2.5. An increasing 
trend of dust is observed over the Northwest part of Kenya Figure 4(e). This is 
due to increased temperature loosening the soil and eventually exposure to the 
atmosphere [28]. For OC and BC, an increasing trend is observed over the 
Western region of Kenya Figure 4(b) and Figure 4(c). The increasing trend is 
caused by anthropogenic activities such as biomass burning, combustion of fossil 
fuels, vehicular and industrial emissions [34]. Figure 4(d) reveals an increasing 
trend of SO4 over the North and Eastern areas of Kenya. This is attributed to 
rapid industrialization and urbanization within those areas. Sea salt is mainly 
originated from the Indian Ocean and therefore, increasing in sea salt is ob-
served on the Coast. 

 

 

Figure 4. The annual trends of MERRA-2 PM2.5 and its individual components, including (a) the PM2.5 (b) Black Carbon PM2.5 
(c) Organic Carbon PM2.5 (d) Sulphate PM2.5 (e) Dust PM2.5 (f) Sea Salt PM2.5 over Kenya during 1980-2020. 

3.3. Spatial Correlations between MERRA-PM2.5 and Its  
Components 

The spatial correlations of PM and its components (BC, OC, SO4, Dust and SS) 
derived from MERRA-2 over Kenya during the study period are shown in Fig-
ure 5. The spatial correlation revealed areas of similarities/dissimilarities and the 
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magnitude of the correlation coefficient (r). A high correlation coefficient (>0.8) 
was observed in the PM-Dust correlation Figure 5(d) over most areas in the 
study domain. It is also observed in the PM-SO4 correlation over the Southeast 
of Kenya. A moderate to high correlation coefficient (>0.5 - 0.8) was observed in 
PM-SO4 Figure 5(c) and PM-SS Figure 5(e) correlation over the East and South 
of Kenya, respectively. On the other hand, a low correlation coefficient was ob-
served in PM-BC Figure 5(a) and PM-OC Figure 5(b) over most areas in the 
study domain. The study reveals that PM distribution is largely contributed by 
dust. Dust is dominated in arid and semi-arid areas in the Northern region of 
the study domain. The region experiences high temperatures which intensify 
surface heating loosening the soil and resulting in an increased convection hence 
higher PM2.5 loading. 
 

 

Figure 5. Spatial correlations of MERRA PM2.5 and its components including (a) PM2.5-OC, (b) PM2.5-BC, (c) PM2.5-SO4, 
(d) PM2.5-Dust2.5, (e) PM2.5-SS2.5 over Kenya during 1980 to 2020. 

4. Summary and Conclusions 

Using 41 years (1980-2020) annual/seasonal data retrieved from MERRA-2, this 
study presented an in-depth understanding of spatial-temporal distribution in 
PM2.5 and components (BC, OC, SO4, Dust and SS) over Kenya as well as ex-
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amined the correlation between PM and its components. The spatial patterns of 
annual mean PM2.5 over Kenya were generally characterized by low (<7 µg·m−3), 
moderate (7 - 9 µg·m−3) and high (>11 µg·m−3) concentrations. Low PM2.5 con-
centrations were observed in high altitude and densely vegetated regions in 
Western and Central parts of Kenya. Moderate PM2.5 concentrations were ob-
served in the Western, Eastern and North Rift parts of Kenya attributed to 
anthropogenic activities. These places experience moderate temperatures. Peak 
distribution of PM2.5 concentrations was observed over dust-dominant arid and 
semi-arid areas of North West regions of Kenya. PM2.5 components BC and OC 
concentration were dominant in the Western region of Kenya due to anthropo-
genic activities in that region. SO4 concentration was also high in most parts of 
the country, a carbonaceous emission from industries. On the other hand, SS 
concentration was high in the South East region of Kenya due to the fact its 
emission is majorly from the Indian Ocean. Whereas, dust concentration was 
relatively high in dust-dominated arid and semi-arid regions of the Northern 
part of Kenya. Dust exhibited the highest percentage contribution to PM2.5 con-
centrations. The seasonal PM2.5 climatology over the entire study domain was 
consistent with that of annual patterns, being low during the local wet seasons 
and high during local dry seasons. This was attributed to seasonality in emission 
sources, anthropogenic activities and meteorological factors such as tempera-
ture, wind speed, precipitation and relative humidity. 

Analysis of PM2.5 and components trends over Kenya during 1980-2020 
showed a significant increase over the years. Positive trends were observed over 
dust-dominated areas that are over the Northern region of Kenya and sparingly 
for SO4. BC and OC showed positive trends around Lake Victoria in the Western 
region of Kenya. On the other hand, SS was relatively positive in the Coastal re-
gion of Kenya.  

This work conclusively compared the spatial correlation of PM2.5 and its 
components. PM2.5-Dust correlation exhibited a strong correlation in most parts 
of the study domain, showing the significant contribution of the components to 
PM2.5 over the study domain. It had the highest correlation coefficient, followed 
by SO4. A low correlation coefficient was observed between PM2.5 and OC. Nota-
bly, change in emissions has a potential effect of adversely affecting PM2.5 trends 
over Kenya. In order to investigate this in detail, revealing the casual relation-
ship, a modelling study is planned as a future research project.  
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